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Abstract 

A balloon flight model constructed to show probability of success at various 
stages of a flight operation can help the planner make choices between possible 
courses of action. The value of such a model depends on how well it approximates 
a real operation and how accurately appropriate probabilities are known. These 
probabilities include balloon and hardware reliability and the probability that the 
crew can accomplish each step of the operation successfully. A first model is 
usually rather crude, and initial probabilities are frequently guesses. With use, 
the model can be refined and the probabilities needed can be estimated quantitatively 
through observation. Even the most refined model is only an aid to the man who 
must make a decision, however. To use it effectively he must understand its nature 
and supplement it with value judgments made independently of the model. To say 
this another way, blind use of an excellent decision model may not result in a good 
decision, but a good model used with understanding can be a valuable tool to the 
decision maker. 

A first model for scientific ballooning is described and used in an example, 
and a method of getting the necessary reliability and operational probability con- 
stants is explained. 
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21.1 DECISIOV THEORY 

Although the purpose of this paper is to show an application of decision theory 
to a ballooning problem, a little background in the theory of decision making is 
necessary to set the stage for understanding the application. First, what is a 
decision ? Strangely, most books and papers on decision theory do not give a spe- 
cific, concise definition. Essentially, however, the decision process involves 
recognizing that an action must be taken, seeking out and comparing the conse- 
quences of taking the action through each of the various alternative ways open and 
resolving which of the alternatives to follow. When an alternative has been chosen, 
a decision has been made. Whether one considers the decision to be the whole 
process or the resolution made at the end of the process isn’t important in the 
application of decision theory, but it does affect the language one uses in discussing 
it. I shall use the word “decision” to include the entire process. For a more de- 
tailed discussion of the theory and terminology of decision theory, the reader is 
referred to Eilon (19691, Sisson et al (196’7a and 1967b). Fishburn (19641, Wheeler 
and Peeples (1969), and Tribus (1969). 

Decisions can be made through the use of formal procedures, or they may be 
made quite informally. They may be rational or irrational. They may be good or 
bad. These words, formal, informal, rational, irrational, good and bad also need 
to be defined. 

A decision was a good one from a decision maker’s point of view if the results 
flowing from the course of action taken following the decision are more favorable 
to him than the results he believes would have followed other decisions. A decision 
was bad if he believes another possible decision would have brought more favorable 
results. Whether a decision was good or bad can not be determined until the con- 
sequences of the decision are clear, and even then it is often difficult to weigh 
those consequences against the possible consequences of other decisions. Goodness 
or badness is usually relative. In spite of the difficulty of evaluating decisions, it 
is important in evolving better decision models that an effort be made to do so. 
Rational, as used here, has a rather special meaning. A rational decision is one 
which is made by following an agreed-upon decision process and using agreed-upon 
criteria to specify how a choice between alternatives is to be made. Thus the 
engineering department of Balloons Ltd., a balloon manufacturer, may have a 
formal procedure (a Computer Program called BALSPEC-1) for determining the 
engineering specifications of zero-pressure balloons to meet stated flight require- 
ments. Clearly, such specifications may be arrived at in many other ways, but if 
company policy dictates the use of BALSPEC-1, it is irrational from the point of 
view of the company for a company engineer to determine them in any other way. 
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If one of the Balloons Ltd. engineers, using another computer program, can 

write equally good (from his point of view) though not identical specifications at 

half the cost of using BALSPEC-1, his decision on what the balloon specifications 

should be to meet the requirements will be rational to him but not to the company. 

On the other hand, if he can convince the company that his specifications are as 

good as those turned out by BALSPEC-1, his program is likely to be adopted and 

named BALSPEC-2. Then it would become irrational from both his point of view 

and the company’s to use BALSPEC - 1. 

The example used above will be used further to illustrate the difference be- 

tween a formal and an informal decision procedure. When flight requirements are 

received by Balloons Ltd., they have to be turned into balloon specifications. 

Once - say, during the Siege of Paris in 1870, when the Parisians were build- 

ing Montgolfiers in their railway stations in an effort to communicate with the 

outside - decisions about balloon design were made very informally. Each designer 

had his own, rather intuitive ideas about gore patterns. A man, not a machine, 

decided on the basis of what cloth was available at the moment, etc., how each 

balloon was to be made. He had many alternatives from which he selected one. 

He made decisions informally, and most of them were irrational to everyone but 

him. 

Since Balloons Ltd. uses a strictly specified procedure to design balloons, it 

is formal, but is a decision being made? Are there any choices? If not, no deci- 

sion was made, because none was necessary. During the evolution of BALSPEC-2, 

however, decisions were being made. Only after the “mathematical model” of a 

balloon which was used as a basis for writing BALSPEC-2 became sufficiently 

realistic, and the criteria for judging what constituted an acceptable balloon were 

clearly defined, could the procedure become so formal that no alternatives were 

considered to exist. The decision process had been used in selecting a model and 

in determining criteria for selecting one among the various alternative materials, 

etc. The engineers who wrote BALSPEC-1 and 2 had, in their view, solved an 

engineering problem. So they had! But they had gone through a decision making 

process in doing it. 

Now that I’ve shown that decision making, even formal decision making, is not 

new to anyone involved in scientific ballooning, I want to construct a mathematical 

model of a different aspect of scientific ballooning. My mathematical model will 

be a version of the “decision tree” which is currently in vogue among writers on 

decision making, for example Archibald et al (1967). Rather than discuss a deci- 

sion tree abstractly, I’m going to try to show what one is and how it is used as I 

construct a decision model. 
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21.2 THE DILEM\l1-PROJECT CO\lET-\IL 

A balloon flight crew has been asked to consider flying a 4,500 pound payload 

to an altitude of 105, 000 feet to study the tail of a comet. The payload can be flown 

on a mylar scrim balloon which will cost $60, 000. The scrim balloon will weigh 

2,000 lbs. The manager of the crew believes that a modern polyethylene balloon 

might also be satisfactory, although experience with polyethylene carrying such a 

heavy payload is quite limited. Such a balloon will weigh 1,500 lbs and cost 

$10,000. (The reader is warned that these numbers and all others used here are 

fictitious. They are used to demonstrate a method of solving a problem, and no 

conclusions about any actual situation should be drawn from them. ) 

If a flight with one balloon were in every way equivalent to a flight with the 

other, the crew would choose the polyethylene balloon because of the obvious cost 

saving. Several differences exist, however. The crew considers the scrim bal- 

loon to be almost certain to succeed. Therefore any failure which may occur if 

the scrim balloon is used is likely to be due to operational difficulties, that is 

electronics, hardware, rigging, launch, etc. The polyethylene balloon is believed 

to have a lower probability of withstanding the rigors of handling and flight than 

the scrim, provided that operational factors do not tip the scales one way or the 

other, but the crew has had more experience with polyethylene balloons,_~and it 

feels that the probability of encountering operational difficulties during inflation 

and launch is less with polyethylene than with scrim. 

The scientist and his sponsor understand in a general way the problems of 

selection, and they know that a flight attempt on either balloon may fail. The time 

during which the comet may be viewed will permit the equipment to be flown twice 

during the comet’s passage with reasonable opportunity for repair between flights. 

They are willing to consider a second flight if that seems appropriate. Therefore, 

the crew may also consider the possibility of using two or more balloons and mak- 

ing at least two flight attempts if necessary. 

If no more information than this were available, the manager of the crew 

would face several possible alternate solutions and he would, through some means 

perhaps not even fully understood to him, make a decision. He can buy the scrim 

balloon, and the cost for the balloon and helium will be $67, 150, assuming that 

helium costs a dollar per pound of lift and that he will inflate to 10 percent free 

lift. He can buy a polyethylene balloon, and the cost for balloon and helium will 

be $16,000. He can buy two polyethylene balloons and know that he can attempt two 

flights at a cost for the balloons and helium of $33,200. Such a course will involve 

additional time and expense on the part of the scientist and additional balloon flight 

crew time. He can buy three polyethylene balloons and attempt three flights at a 

cost for balloons and helium of $49, 800. Perhaps he might even consider buying 

two scrim balloons or a scrim balloon and a polyethylene balloon. 
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It is clear to him that at the very least he needs to calculate more carefully 

the cost of flying two or more flights on polyethylene, but even if he finds that two 

such flights can be conducted at a cost comparable to one flight on scrim, should 

he select the polyethylene? Not necessarily! If the costs of two programs are 

equal, he should select the one having the better probability of success. This tells 

him that he also needs to incorporate some measure of reliability into his decision 

making process. 

21.3 .4 SIHPLE DECISION TREE 

As a first try at constructing a decision model, the manager drew Figure 21.1. 

Events which may occur during the ballooning operation are marked by rectangular 

boxes. In this tree the event is described briefly in each box, but each event is 

also identified by a number - just below the event box. Events follow in sequence 

from left to right along each branch of the tree. The final event along any branch 

is either success or failure, designated by S and F respectively. 

The chart implies that once inflation is started (event 1) four events only may 

follow. These are: event 2 - inflation will be successful and the balloon will be 

Inflation 
succemful 

Figure 2 1.1. Balloon Flight Decision Tree for One Balloon and One Inflation 
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launched, event 3 - the balloon will fail in some manner during inflation and be- 

cause the payload can not be flown, insufficient scientific data will be collected and 

the operation will fail, event 4 - an operations failure of some sort will occur 

which will result in loss of the balloon and lead to failure of the entire operation, 

and event 5 - a hold because of some problems on the part of the scientific or opera- 

tions crew will result in expenditure of the helium but will leave the balloon usable. 

Another manager might have chosen different events. The important thing is 

that the events should be pertinent, and they should be both mutually exclusive and 

exhaustive, that is they should all be recognizable, events such that if one occurs 

no other can occur, and taken all together they should include all possible events. 

One might ask, “what if inflation is startedand stopped almost immediately so that 

essentially no gas is expended and the balloon is not damaged? ” Under such condi- 

tions the manager would consider that event 5 had occurred, although the cost would 

not be the same as if all gas had been expended. Thus, somewhat arbitrary defini- 

tions are accepted in order to simplify the chart. They are akin to approximations 

often accepted in engineering practice. The3 should be accepted only with know- 

ledge of their implications, however. 

The probability that any one of the events-will follow another event is given 

along the arrow joining the event boxes. For example, q1 is the probability of a 

successful inflation leading to an attempted launch once inflation is started. The 

sum of the probabilities along a set of arroKs proceeding~fr~om any event is 1. 

Thus 

41 + Pl + P2 + Pg = 1 and Q, + PI + P2 + P3 = 1. 

Note that along some arrows the probability is shown as 1.0, meaning that the next 

event is certain to follow. By definition, than, a successful inflation will be follow- 

ed by an attempted launch. Also by definition - if launch is not attempted, suffi- 

cient scientific data will not be collected, and the mission will have failed. 

Even if the launch is attempted, however, the mission can fail.The ways in 

which success or failure can occur following a launch attempt are shown following 

event 6 on the chart. They are: event 7 - a successful flight in which sufficient 

scientific data are collected, event 8 - failure of the balloon, but the failure may 

occur after the scientific mission is accomplished and so not preclude success of 

the mission, event 9 - an operations failure occurs, but again the mission may 

succeed in spite of it, and event 10 - the scientific equipment may malfunction or 

insufficient data may be obtained for reasons other than operations or balloon 

failure. 

The probability that some combination of events will occur is calculated by 

following the usual rules for combining probabilities. The tree helps in keeping 
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the procedure straight. Thus the probability that success will occur as a result of 

a particular sequence of events is obtained by taking the product of all the proba- 

bilities found along the branch representing that sequence of events. In Figure 2 I. 1 

the probability of success and failure at the end of each branch is shown in the 

lower part of the success and failure boxes. The overall probability of success 

may be obtained by summing the probabilities in all the boxes marked S, and the 

overall probability of failure may be obtained by either summing all the probabili- 

ties of failure or by subtracting the probability of success from 1. 

The probability of success is 

Ps = q1 IQ, + Plal + P2a21 . 

The probability of failure is 

PF = PI +P2 +p3+q1r 11 PI +P212+P3]. 

It may not be obvious that PS = 1 - PF, but if one makes use of the identities 

~-Q~=P~+P~+P 3 

1 - al = 11 

1 - a2 = I2 

he can readily determine that it is true. 

By using appropriate probability values for each of the balloons, the manager 

can now calculate the probability of success and failure and compare them with 

cost. Let’s assume that the probabilities he needs are those given in Table 2 1. 1. 

We’ll discuss in the next section how he might have arrived at such values. 

The probability of success with the scrim balloon (PS s) is , 

ps, = 86 + x + 0.07 x s 0. 93 [O. 0.01 0.25 0.401 

= 0.83 

and with the polyethylene 

Ps = 0. 89 [O. 82 + 0. 07 x 0. 10 + 0. 05 x 0.401 I p 

3 0.75. 
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Table 21. 1. Operational Probabilities 

Poly- 
Scrim ethylene Sequence of Events to Which Probability Applies 

q1 .93 .89 Successful inflation following start of inflation. 

Pl -01 .06 Balloon fails on inflation attempt. 

p2 .02 .03 Balloon is lost during inflation due to an opera- 
tions failure. 

P3 -04 .02 Operations or Scientific hold causes loss of gas 
but not balloon. 

Q, .86 .82 Successful flight following successful inflation. 

Pl .Ol .07 Balloon fails during flight. 

P2 .07 .05 Operations failure occurs during flight. 

P3 .06 .06 Scientific failure during flight prevents success. 

al .25 . 10 Balloon failed but adequate scientific data obtained 

I1 .75 .90 Balloon failed and inadequate data obtained. 

a2 .40 .40 Operations failure but adequate data obtained. 

I2 .60 .60 Operations failure and inadequate data obtained. 

The probabilities of failure with the scrim and polyethylene are respectively: 

pF,s = 1 - 0. 83 = 0. 17 

P 
F,P 

= l-O.75 =0.25. 

The costs which the manager has estimated for the operation depicted by 
Figure 2 1. 1 are shown in Table 2 1.2. From Table 2 1.2, the manager can assign 
costs to each success or failure event on the decision tree. Event 3 will cost the 
sum represented by the symbols G + E + B + H + I and so will event 4. Event 5 
will cost G + E + H + I if the balloon is not damaged and its cost can be recovered. 
If the balloon is designed just for this flight, however, and none of its cost can be 
recovered, the cost of event 5 is the same as events 3 and 4. The costs to be 
associated with each of the successes or failures following launch are all the same, 
and they are obtained by summing cost categories G, E, B, H, I and F. 
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Table 2 1. 2. Definition and Cost of Each Cost Category 

cost - 
cost cost - Poly- 

Symbol Scrim ethylene Definition 

Preparing and delivering scientific 

I $150,000 $150,000 payload to the launch site, including 
all scientific crew costs prior to 
layout for inflation. 

G 
Balloon crew costs for preparations 

3,000 3,000 leading up to layout for first at- 
tempted inflation. 

E 1,000 1,000 Cost of expendable hardware, rigging, 
etc. used on each attempted flight. 

B 60,000 10,000 Cost of one balloon. 

H 7, 150 6,600 

I 1,500 1,500 

Cost of helium for one inflation. 

Balloon crew and scientific crew costs 
for layout, etc. through inflation. 

F 2.000 2,000 Cost of launch and ensuing flight 
operation. 

R 10,000 10,000 
Cost of repairing scientific and flight 
equipment after a flight. Crew per 
diem and salaries are included. 

;:: D 1,200 1,200 
Cost of scientific crew per diem, 
salaries, etc. due to a delay result- 
ing from an aborted inflation. 

+Since such a delay will occur only if a balloon is available for another inflation 
attempt, this delay is principally a wait for a suitable day. It may be as little as 
1 day or it may be many. The manager assumes 3 based on normal activity, 
climatology, etc. 

The manager can now determine the risk of flying with polyethylene by multi- 

plying the probability of each failure event by the cost of that event and summing 

all the products. He can do the same thing with scrim, and then he can compare 

the two risks. This is the simplest way of combining the measured of performance 

(the probabilities of failure and the costs) into a single measure of utility. If he 

accepts this measure as an adequate one, he would choose the balloon for which 

the risk is lower. 
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For balloons characterized by the data of Tables 21. 1 and 21.2, the various 

probabilities of failure, the corresponding costs and the product of the two are 

shown in Table 2 1. 3. The risk is the sum of the products. It is slightly lower 

with scrim. 

Table 2 1. 3. Computation of Risk for a Flight of One Balloon 
and One Inflation , 

Prob. 
Scrim Polyethylene 

Symbol Prob. of Scrim Prob. of Polyethylene 
Failure cost Product Failure cost Product 

qlPII1 .007 $224.650 $ 1,573 .056 $174,100 $ 9,750 

qIP212 .039 I, 8,761 .027 I, 4,701 

%P3 . 056 II 12,580 .053 I, 9,227 

p1 

p2 

. 01 222,650 2,226. .06 172, 100 10,326 

. 02 
II 

4,453 .03 II 5, 163 

p3 . 04 
II 

8,906 .02 
II 3,442 

Risk $38,499 $42,609 

Risk as a measure of utility does not take into account the value of the data 

one might get from a successful flight. In this case if the value of the data is ex- 

pected to be less than the cost of the flight with a scrim balloon but greater than 

the cost with a polyethylene balloon, the scrim would clearly be the poorer choice. 

If this were true, however, to conduct the experiment with a balloon as a vehicle 

probably wouldn’t be worthwhile anyway, and another alternative should be sought. 

If the worth of a successful flight is known, .a better measure of utility than 

risk can be used. Often termed expectation by game and decision theorists, it is 

the sum of all the products of the individual probabilities of success and their 

corresponding gains (worth of the experiment less the cost) less the risk. To 

illustrate for this example, let’s assume the value of a successful experiment is 

$l,OOO,OOO. Then the gain if one succeeds is ($1,000,000 - $224,650) for scrim 

and ($1,000,000 - $174, 100) for polyethylene. It is the same in this example re- 

gardless of whether one succeeds via event 7 or event 8 or event 9, because the 

cost is the same for each of these events. The expectation is then 
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[ 
(9 ,Q 1 + qlpla 1 

+ qlP,,a,) (value of experiment - cost of flight) - risk . . I 

For scrim this is (0. 833 x 775, 350 - 38,499) or ,§603,490. For polyethylene it 

is $580, 120. Expectation also favors scrim under these conditions. 

The worth of an experiment is rarely known, a priori, but sometimes it is 

possible to say that it has a value greater than or less than some specified value. 

We can calculate a number from the information we have which may be useful as 

a discriminant between courses of action. 

Let V = value of a successful flight, C, and Cp be the costs of a flight with 

scrim and polyethylene respectively and rs and rp the risks with scrim and poly- 

ethylene. I’hen in this simple case 

es = W - C,) Ps,~ - rs (expectation with scrim) 

and 

ep = W - Cp) Psp - rp (expectation with polyethylene). 

If one equates the expectation with scrim to that with polyethylene, he can cal- 

culate the value of V (designated by Ve) for which scrim and polyethylene are 

equally attractive. Thus 

ve = 

= 

z 

( , csps s + %J - (CpPS, p + rp> 

Ps,s - ps,p 

(224,650 x 0.828 + 38,499) - (174, 100 x 0.754 + 42,609) 
0. 828 - 0.754 

$684,000. (21. 1) 

If the sponsor or the scientist regards the worth of a successful experiment to 

exceed this, the scrim should be chosen. If not, the polyethylene should be chosen 

unless the worth of the experiment doesn’t greatly exceed the cost of a flight on 

polyethylene. If it doesn’t, the advisability of flying the experiment on any balloon 

should be seriously questioned. 

21.4 ESTIV4TIYG PROBABILITIES 

Normally a balloon flight facility manager doesn’t think in terms of proba- 

bilities such as those listed in Table 2 1. 1, but he does frequently know the percen- 

tage of flight attempts which result in successful flights. He also can usually 
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determine from records available to him what fraction of the balloons fail during 

inflation and what fraction fail during flight. In these and similar records he may 

have the data required to form good estimates of some of the probabilities. ql in 

Table 2 1. 1 may be estimated by dividing the total number of attempted inflations 

into the number of successful ones, taking care to define a successful inflation as 

it is defined in Table 2 1. 1. An error could easily be made here by including as 

successes those inflations which were successful except that for operations or 

scientific reasons they were not followed by a launch attempt. Assume for purpose 

of illustration that 100 inflations of scrim balloons in the appropriate size and load 

carrying range have been attempted. Of these 93 were successful, one failed due 

to a defective balloon, two were destroyed due to operational errors and four were 

either partially or wholly inflated but for operational or scientific reasons were 

then deflated and stored for future use without damage to the balloon. Then the 

numbers 93/100, l/ 100, 2/100 and 4/100 are estimates of the probabilities ql, pl, 

p2 and ~3. Now a population of 100 is a fairly large one in ballooning if the balloon 

size and payload range are at all restrictive, and when 99 out of 100 balloons per- 

form satisfactorily during inflation (there were three failures, but two were be- 

lieved or known to have been caused by operational failures), one is willing to 

concede that the balloons perform reliably through the inflation operation. In fact, 

most of us probably wouldn’t reject the statement that the reliability through in- 

flation is 0. 99. 

Would we as readily accept the statement that the probability of failure is 0. 01 

knowing that only one failed? That failure could have been an accident, or perhaps 

it was an accident that only one failed. Several others may have been on the verge 

or failure. We can not doubt that the probability of failure is 0. 01 without also 

doubting that the reliability is 0. 99, however. The point is that even with a record 

of flights which is large in terms of scientific ballooning, it is clear that we ques- 

tion the accuracy of probability values calculated from it. 

I have outlined a way to use past performance records to estimate probability 

values which can be used in decision models, but I have also cast doubt on the 

accuracy of the values obtained, especially when the sample size is small. Another 

reason exists for questioning the accuracy of probability estimates based on past 

performance. What if the company which laminates the mylar film to the dacron 

scrim has made a subtle change in the lamination process? Do the results of the 

past still provide a basis for making estimates about the behavior of scrim balloons 

in the future? We don’t know, of course, but if we accept the hypothesis that the 

past offers no information about the future because of this change, we must start 

over again with material tests, test flights, etc., if we are to have any basis for 

decisions about courses of action for the future. Changes such as the one sug- 

gested here are rarely so drastic that they cause us to lose complete faith in the 
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value of past performance as a measure of future performance. Usually we accept 

the thesis that past performance of a system provides an acceptable first approxi- 

mation to future performance of a similar system; then we modify that first appro- 

ximation to account for known or anticipated differences in the system. 

Because we know that the accuracy of the best probabilities we can obtain to 

use in a formal decision model is open to question, we may question the wisdom of 

using them at all in decision making. But can we make a decision without using 

some measure of reliability? If we choose from two courses of action the one 

which will be less expensive if every aspect of the operation is successful, we are 

implicitly assuming that the difference in probability of success of the two systems 

is sufficiently small that the cost difference is more significant than reliability. 

If we are determined to buy the balloon system which is more likely to succeed, we 

must first decide which system that is, requiring at least that we made a compara- 

tive estimate of the likelihood of success. We are also implicitly assuming that 

the difference is great enough to compensate in some way for the difference in cost 

if the one we select is the more expensive one. It is difficult to conceive that a 

decision can be made between two balloon systems unless the decision maker does 

make either explicit or implicit assumptions about the relative likelihood (proba- 

bility) of success of the systems. If such assumptions are indeed made, the deci- 

sion maker should use the best information he has to estimate the likelihood of 

success, and he should use the estimates he makes in such a way that he under- 

stands at least qualitatively how they influence the decision. 

If we accept these arguments and the conclusion, we see the need for con- 

sciously determining and using probabilities in decision making, and we recognize 

that probabilities which are applicable to ballooning will always be estimates. We 

recognize the need therefore to understand how these estimates affect our decisions 

so that we can take into account any doubts we may have about the accuracy of the 

estimates. 

In the statement of the problem, it was pointed out that experience with flights 

of polyethylene balloons carrying heavy payloads is quite limited. Any estimate of 

the probability of success of a polyethylene balloon system of the type required 

which can be made from past performances of comparable systems will therefore 

be very doubtful. On the other hand, from his records the manager knows that 

there is a wealth of data on polyethylene systems carrying smaller payloads. He 

knows that several flights carrying payloads nearly as heavy as this one have 

succeeded and a few have failed. Further, recent improvements have been made 

in the seal strength of polyethylene balloons. He must try to use this and other 

information available to him to make the estimates he needs. 

He can simply make an educated guess at the value of each of the probabilities 

he needs for the decision model, using his experience and knowledge to guide him 
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and making use of the fact that the sum of the probabilities of each of several 

groups must be unity. He can ask others who have experience in ballooning to 

make such guesses also, after assuring himself that each understands the purpose 

of the guesses and has reviewed the pertinent information available to him. An 

open discussion of information by those who are going to contribute guesses can be 

helpful. It will expose each to the other’s concepts of what information is perti- 

nent. It is probably better for each contributor to make his guesses privately than 

publicly in a meeting, however. 

The various guesses can be combined in any number of ways. If all contri- 

butors are equally knowledgeable and all are considered to be unbiased, an un- 

weighted average of all guesses of a particular probability may be best. The aver- 

age then provides the group’s best estimate and the variability of the responses 

serves as a measure of the uncertainty. A weighted average has some potential 

advantages over a straight average, however, because it allows the values con- 

tributed by the more knowledgeable participants to be given more emphasis. If the 

manager intends to use a weighted average, he should decide before he has the 

responses in hand what weights he will assign to the various contributions. Other - 

wise he may bias the results unduly by what he himself believes. 

Let’s assume that the probabilities given in Table 2 1. 1 for polyethylene are the 

result of averaging the contributions of five knowledgeable people. Let’s also as- 

sume that the person making the estimates most favorable to polyethylene turned 

in the following values for the operation using a polyethylene balloon: 

41 = 0.91 Q, = 0.85 

p1 = 0.04 P1 = 0.04 

p2 = 0.03 P2 = 0.05 

p3 = 0.02 P3 = 0. 06 

If the other values in Table 2 1. 1 are used with these, we find that the probability 

of success with polyethylene is 

ps,P = 0. 91 [O. 85 + 0. 04 x 0. 10 + 0. 05 x 0.401 

= 0.91 x 0.874 = 0.795 . 

Thus the most optimistic set of probability values shows an overall probability of 

success of 0.795 while the adopted set showed 0.754. Since the cost of the opera- 

tions are unchanged, the expectation for polyethylene, using this more optimistic 

probability and assuming the value of a successful flight to be $l,OOO,OOO is 
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$622, 3 10. This exceeds the $603,490 calculated for scrim. Mso, a successful 

flight must have a value of $1,540,000 in order that the expectation with scrim will 

equal that with polyethylene. This contrasts with a value of $684,000 using the 

polyethylene probability data of Table 2 1. 1. The risk for polyethylene using 

‘F,p 
= 0. 205 is $35,280 contrasted to $38,499 for scrim. Polyethylene would be 

the more logical choice unless the value of a successful flight is known to exceed 

$1,540,000. 

These results show that with the costs and experiment value assumed in this 

case, the various measures of utility are fairly sensitive to changes in reliability. 

But if the value of a successful experiment were known to exceed $1,540, 000, 

neither the expectation nor the discriminant would have indicated a change ofchoice 

from that made with the averaged probability data. If this were true, the manager 

would have been fairly confident that scrim was a good choice. If he had questioned 

that the value of the experiment was as great as $l,OOO,OOO, however, he might 

have wished to compare measures of utility using one of the more pessimistic sets 

of estimates of the reliability of polyethylene. In the end, he probably used the set 

he considered to be the most accurate, but he understood how variations in the 

reliability of polyethylene could affect the measures of utility he was using. 

Even with the best possible probability estimates, a bad decision may be made; 

a decision based on intuitive feelings about reliability is as likely to result in a bad 

decision as a good one. Therefore, unless one can devise an acceptable decision 

model which is not sensitive to the probabilities of success or failure, he must 

make the best estimates of reliability he can. The manager in this case should 

strive to find better ways of estimating probabilities for future decision models. 

Perhaps he can find ways to combine the results of materials tests, seal strength 

tests, manufacturer’s quality control checks, etc., into meaningful balloon success 

or failure probabilities. He must not ignore the need for better estimates of the 

probability of success and failure in the various facets of operations either. Above 

all, however, he should not let the difficulty of obtaining acceptable probabilities 

lead him to adopt a decision model which implicitly assumes values of probability 

of success and failure for a balloon or for any aspect of the operation, unless he 

is aware that he is making the assumption and understands its consequences. 

21.3 UORE COMPLEX DECISION TREES 

The manager, having used decision theory to study a very limited set of 

alternatives, had a better understanding of its limitations than he had before, but 

he also had acquired an appreciation for its potential value. He decided to con- 

struct a model to study a more realistic set of alternatives. He assumed that he 
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will have two balloons available, that two attempted launches are permissible and 

that he can go through as many as three inflations if necessary. 

As a first step he decided to extend the simple decision tree to include the 

possibility of a second inflation. The tree, showing events only by number, is 

presented in Figure 21.2. The branches of the tree going through events, 2, 3 and 

4 are exactly like the tree shown in Figure 2 1. 1 except that the success twigs at 

the end of the branch have been gathered together into one success bundle and the 

failure twigs also are formed into one failure bundle. The probability that events 

will lead to either of these bundles once inflation is started is given in the box 

representing the bundle. 

Several simplifications of the tree are possible. For the purpose to be served 

here, events 3 and 4 can be combined. Also events 7 through 10 can be combined 

into two events, success and failure. The branch on the tree growing through 

event 5 following the first inflation is exactly like the tree itself without thatbranch, 

except that on the tree event 5 leads to a second event 1 while on the branch event 5 

leads to failure. The branch growing through events 1, 2, 6, etc. to success and 

failure is a complex, re-occurring branch which for this application can readily be 

simplified to the one shown in Figure 2 1.3. Making use of these simplifications 

makes it possible to redraw Figure 2 1.2 as shown in Figure 2 1.4. The sequence 

of letters following each S and F event box will be explained in the next paragraph. 

Calculating the probability that events will lead to any one of the success or failure 

boxes is simple from this diagram. 

The sequence of letters following each success and failure box are the letter 

symbols for the cost categories shown in Table 21.2. They are written in a special 

sequence to help avoid errors. Starting with the shortest sequence, that following 

events 3 and 4 after the first attempted inflation, the costs are the common costs 

which aren’t repeated (G), the cost of expendable hardware (EZ) which must be re- 

placed after each launch attempt, the cost of the balloon (B), the cost of the helium 

(HI and the cost of the inflation operation I. The cost categories which occur if the 

balloon is flown after the first inflation are shown after the SI and FI event boxes 

at the top of the chart. The sequence is exactly the same as the sequence described 

above except that the cost of the flight (F) is added. This F should not be confused 

with a failure symbol, but the usage is so different that no confusion is likely. 

Enough has been said that it should be fairly obvious if one starts at the left side 

of the chart and adds cost categories as events occur along any branch, he has the 

appropriate sequence when he reaches the end of the branch. The sequence after 

each success will end with an F; the sequence after each failure will end with 

either an I or an F. 

By using the cost symbol shown after each failure event and Table 2 1.2, the 

total cost of all the events leading to that failure event can be readily calculated. 
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Figure 2 1.2. Decision Tree for One 
Second One is Advantageous. 

Balloon and a Second 

I I I 

Inflation if a 

2 

F 

1 

Figure 2 1. 3. Simplified, Recurring Branch in Which 
PS = (Ql + Plal + P2a2) and PF = (PlIl f P2I2 + P3). 

Also PS + PF = 1. 
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q1 

1 

Figure 2 1.4. Simplified Decision Tree for One Balloon and as Many as 
Two Inflations. 
be replaced by 

Note that (pl + p2 
(1 - ql) 

+ p3) along the lowest branch could 

That cost multiplied by the probability that failure will occur in that way gives the 
risk of failure through that particular chain of events, that is the events along that 
branch. As in the simple tree, the sum of all such risks is the risk of the entire 
project. Mathematically this can be written 

r = ;;” (C)i PF)i 
i=l 

(21.2) 

where there are n failure events, (PFji is the probability of failure through the 
ith failure event and (C)i is the cost of all events leading up to and including that 
failure event. 

Similarly, if the value of a successful experiment is known, the expectation 
can be written 

e = JF1 [v - (')jl ('S>j - i, (‘F> i (‘>i (21.31 

where there are m success events. 



Finally if one wishes to know the value the experiment must have in order that 

the polyethylene and scrim will have equal expectation, the following equation may 

be used: 

Ve = [ESC] - [EPC] 
)+ (Ps>s - PSp) (2 1.4) 

in which 

( ps,s - ps,p 1 = jrl (pS,s)j - jTl (ps.p>j . 

Equations (2 1.21, (2 1. 3) and (2 1.4) are general and may be used with decision 

trees of any complexity which are constructed like the ones used here. Ve is a 

sufficiently useful number that some additional discussion of it is worthwhile. 

The terms in brackets in the numerator of Eq. (21.4) may be interpreted as 

expected costs of the project. The first as written above is a best estimate of the 

cost of the operation with scrim if only those balloons, inflations, services, etc., 

which are necessary to give success or lead to ultimate failure are used. One 

might view it as the best estimate we can make of the average cost of a large num- 

ber of similar projects carried out with scrim. Many will succeed with one balloon, 
one inflation and one flight attempt. These will not be very expensive. A few will 

use two balloons, two inflations, etc., and cost more. 

The difference between the two terms in brackets in the numerator is then a 
best estimate of the difference in cost of carrying out the experiment using scrim 
and polyethylene. The terms in the denominator are the overall probabilities of 

success with scrim and polyethylene in that order. 

Ve may take any value, being undefined at plus and minus infinity. If Ve > 0, 

the more costly operation is also the one more likely to succeed. A decision be- 

tween them can only be made if the actual value of the experiment is deemed to be 

greater than or less than Ve. If it is greater than Vea one chooses the more even- 

sive alternative. If it is less, the lower cost alternative is preferable. If Ve t 0, 

there is no difference in the costs, but there is a difference in the probability of 

success, and the more reliable alternative should be chosen. If v, < 0, the more 
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costly operation is the one less likely to succeed. The choice is obvious. Finally, 

V, may be undefined (that is f 06 ) because the probability of success with one 

balloon system is equal to the probability of success with the other. The lower 

cost system should then be chosen. 

The simplification in tree construction leading to Figure (21.4) makes trees 

with additional alternatives appear tractible. Consequently the manager proceeded 

to construct a tree which would let him compare the alternatives open to him if he 

has two balloons and the opportunity for as many as three inflations and two launches. 

Figure (21. 5) is the decision tree which resulted. 

The events which are numbered are defined exactly as they were in the first 

simple tree. The success and failure events have also been identified by number 

as well as by the letters S and F. The probability symbols shown along the arrows 

between events have two numbered subscripts instead of a single one as before. 

The first subscript is used exactly as before. The second one identifies the balloon 

being used. If the second balloon were exactly like the first, this would not be 

necessary; but if one wishes to consider the possibility of using a scrim balloon 

with a polyethylene backup, the probabilities along the branches must be differenti- 

ated. 

Note that some event boxes have two or more numbers in them. This was done 

because it was not helpful to identify the events separately for the decision the 

manager was trying to make. In the selection of a balloon, for example, it is not 

important whether a balloon fails because of defects or because it is damaged dur- 

ing the operation; therefore events 3 and 4 can be combined into an event identified 

as 3, 4 and defined as the occurrence of either event 3 or event 4. 

The scientist’s sponsor might use a similar decision tree to help him select 

the best combination of crew and balloons. He would be interested in differentiating 

crew performance and cost as well as balloon performance and cost, and so might 

want to keep events 3 and 4 separated; he might wish to consider other events as 

well. 

When events are combined as 3 and 4 are here, the probability of occurrence 

of the combined event is the sum of the probabilities of the individual events since 

the individual events are mutually exclusive. If combining leaves the possibility of 

only two events following a given event, the probabilities are easier to show as the 

probability of the occurrence of one of the events and the probability of non-occur- 

rence of that same event. This is done following the third inflation where ql 2 and 

(1 -q 1 2) are used instead of ql 2 and (pl 2 + p2 2 + p3 2). This is possible here 

becau$e when all permissible inflation atiempts ‘have been made, event 5 also 

results in failure even though a balloon may still be available. 

Finally, note that some of the letters symbolizing cost categories are under- 

lined. Those which are not underlined apply to the first balloon used in the 
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Figure 2 1.5. Decision Tree for an Operation Involving Up to Two Balloons, 
Three Inflations and Two Launches. If both balloons are identical, 
q1,1 = 91,2; P~,~ = ps,2S etc. If the balloons are different, in general 

ql,l # q2; etc. 
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operation; those which are underlined apply to the second. This becomes important 
only if the costs are different, for example if the first balloon is scrim and the 
second is polyethylene. 

From Figure 2 1.5 and Table 2 1.4, probabilities can now be readily combined 
to determine the ‘probability of each of the success or failure events. From 
Figure 2 1.5 and Table 2 1.2, the cost of each success or failure event can be deter- 
mined. These results are given in Table 2 1. 5. 

Table 2 1.5 is essentially a computation form from which the value of the vari- 
ous terms of Eqs. (2 1.2) and (2 1.4) can be determined. 

Table 2 1.4. Probability of Succession of Events for the Decision 
Tree Depicted by Figure 21.5 

e 
Succession 
of Events 

1 to 2 

1 to 3 

lto4 

1 to 5 

2 to s 

2 to F 

1to3, 4 

1 to 3, 4, 5 

Probability Symbol 

q1,1 Or 41.2 

p1.1 Or p1,2 

p2, 1 Or pa, 2 

p3, 1 Or p3,2 

ps, 1 Or ps, 2 

pF,l Or pF,2 

(p1, 1+ p2,1) Or (p1,2 + p2,2) 

(1 - q 1 , 1) or (1 - ql 2) > 

Scrim 

. 93 

. 01 

. 02 

. 04 

. 890 

. 110 

. 03 

. 07 

Poly- 
ethylene 

. 89 

. 06 

.03 

. 02 

. 847 

. 153 

. 09 

. 11 

Table 2 1. 6, derived from Table 2 1.5, gives the overall probability of success 
and failure, the risk (c (Ci) (pF)i) and the expected cost (C (CJj (PSIj + C (CIi (PFIi) 
of a number of possible alternatives. The second column of Table 2 1.6 shows 
which failure probabilities in Table 2 1. 5 to add to obtain the overall probability of 
failure of the mission (shown in column 3) for the alternative stated in column 1. 
The probabilities given in columns 3 and 5 are carried to the third place to the 
right of the decimal, as they were in Table 2 1. 5, for consistency in computations 
only; they aren’t known that accurately. 

Column 4 of Table 2 1.6 shows which success probabilities in Table 2 1.5 to 
sum to obtain the overall probability of success, and column 5 gives the numerical 
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probability of success. Column 6 is the sum of the products of the individual proba- 
bilities of success and the corresponding costs given in Table 2 1.5 and column 7 is 
a sum of the products of the individual failures and the corresponding costs. The 
numbers in column 7 are the mathematical risks of the various alternatives. The 
sum of corresponding numbers in columns 6 and 7 is entered in column 8, and it is 
the average cost of the alternative shown on that row in column 1. 

Finally the last two columns are the maximum cost and the maximum risk 
respectively. The maximum risk being defined as the maximum cost times the 
overall probability of failure. Note that the numbers in the last column are slightly 
larger than the numbers in column 7. Also the average cost of each of the alter- 
natives is less than its maximum cost. 

It is interesting to note that for any of the alternatives which include one scrim 
balloon and one polyethylene balloon, the overall probability of success is slightly 
higher if the scrim is flown first, but the average cost is greater if they are flown 
in that order. 

By combining the data from any two alternatives through the use of Eq. (2 1.4), 
the value of the discriminant Ve can be determined, and the alternatives can be 
compared. Tables 2 1.7 and 2 1.8 show such comparisons between each pair of 
alternatives. 

Tables 21.7 and 21.8 are very similar. Both are special matrices. The rows 
and columns are identified by the maximum number of balloons and inflations which 
may be used in a particular course of action, and the order in which the balloons 
are given is the order in which they will be used. Therefore, lS, lP, 31 is differ- 
ent from lP, lS, 31. The elements of the matrix, except the diagonal elements, 
are values of the discriminant which one obtains by comparing the two courses of 
action identified by the row and the column. The courses of action are arranged in 
order of cost with the most expensive in the top row and left column. This arrange - 
ment permits the discriminant values to be entered in the matrix in such a way that 
if the value of a successful experiment exceeds the matrix element, the course of 
action identified with the row on which the element is found is preferable to the 
course of action on the column. This rule is stated in the upper left corner of the 
matrix. Since the elements along the diagonal are not used for discriminant values, 
the cost and probability of success of the operation indicated by both the row and 
column are shown there for convenient reference. 

Let’s assume that the value of a successful experiment has been determined to 
lie between 3 and 3. 5 million dollars. Since the most reliable choice is 2S, 31, 
the manager selects the row labeled 2s. 31 and scans it, seeking a number larger 
than 3,000. This represents a discriminant value of $3,000,000 because all num- 
bers in the body of the table are in thousands of dollars. He finds the number 3,885. 
Since the value V of the experiment is less than 3,995, the column alternative 
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(lP, lS, 31) is preferable to the row alternative according to the instructions in the 

upper left corner of the table. In effect we are saying that the operation using two 

scrim balloons and up to three inflations will not on the average be enough more 

reliable than an operation with one polyethylene balloon, one scrim balloon and up 

to three inflations to warrant the difference in expected cost if the value of the ex- 

periment is less than $3,995,000. Now the manager enters the lP, lS, 31 row and 

seeks a number larger than 3,000. Since he finds none, he accepts the one poly- 

ethylene, one scrim, three inflation alternative as the best choice. He finds the 

expected cost ($191,097) and the probability of success (0.97) along the diagonal 

where the lP, lS, 31 row intersects the 1P. lS, 31 column. 

Using the procedure just used, we can construct a set of rules for choosing 

alternatives in this case. These are shown in Table 21.9 for both the expected 

cost and maximum cost alternatives. The choices are ranked in the order of des- 

cending experiment value. If the value of the experiment is high enough, three 

scrim balloons and up to three inflations are preferred regardless of whether the 

charges are to be made only for the balloons, equipment and services actually used 

or for the whole program. The preferred program at the next lower experiment 

value includes one scrim and one polyethylene balloon and up to three inflations, 

but the order in which the balloons should be used differs between the two costing 

systems. If the charges are made only for those services, etc., actually used, 

the polyethylene balloon should be used first because the expected cost is lower 

proportionally than the slightly lower reliability. If all balloons, services, etc. , 

are to be paid for, however, the alternative having the higher reliability is pre- 

ferred. Having only one balloon and one inflation is never a good choice, although 

it is listed in Table 21. 9. It is the best choice only when the value of the experi- 

ment is less than the cost, and under such circumstances the experiment isn’t 

worth conducting in this manner. 

In discussing the one balloon, one inflation model, risk was considered as a 

measure of utility. From Table 21.6, we can see that the alternatives would be 

ranked as follows by risk: (1) ZS, 31; (2) lP, lS, 31; (3) lS, lP, 31; (4) 2S, 21; and 

(5) 1s. lP,21. The first two choices, if one were to use risk, correspond to the 

preferred choices indicated in Table 2 1. 9 for highly valued experiments. In uses 

similar to this, choices made using risk as a measure of utility have been found to 

agree generally with choices made using expectation when the value of the experi- 

ment is high. Risk is not a good measure of utility when the value of the experiment 

is low, however. 

Now, what appears to be a good decision from the point of view of the manager 

may not be an acceptable solution to the sponsor. For example, the total amount 

of money available to the sponsor may be a deciding factor in eliminating some 

alternatives. Perhaps if he can hold his expenditure on Project Cometail to 
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$225,000 or less, he will have money to sponsor another potentially valuable ex- 

periment. He can use the information in Table 21. 9 as input to his own decision 

model and weigh these alternatives against others open to him. If he should decide 

that $225,000 is all he can invest in this experiment, two polyethylene balloons and 

three inflations is the preferred alternative. 

On the other hand, suppose the sponsor is trying to decide between balloons 

and a satellite as vehicles for Project Cometail. He believes that for $5,000,000 

the probability of acquiring sufficient acceptable date by satellite is virtually cer- 

tain, say 0.999. Furthermore, he is willing to invest the $5, 000, 000 for this pur- 

pose unless an acceptable alternative can be found. The manager can now accept 

the fact that the data which can be acquired by successfully carrying out the experi- 

ment are worth at least $5,000,000. Using that value for V, he would choose 

2S, 31 or lS, 1P. 31 depending on the mode of charging. 

Once again, if the sponsor is trying to decide between balloons and a satellite, 

he will note that there is still a 0. 02 probability of failure with the best alternative 

offered here using balloons as vehicles. If the satellite offers a 0. 999 probability 

of success, he can calculate that the value of the Cometail data must equal approxi- 

mately $250,000,000 for the expectation from the satellite to equal the expectation 

from the best balloon choice. This approximation is made using Eq. (2 1.4) as 

follows : 

- ve = 5,000,OOO 0 . 999 - 316, 0.98 150 = $246,518,2 10 

This is strictly valid only if the total cost of each program is independent of 

the success or failure of the program [that is, in Eq. (2 1.41, (C)j = (C)i]. That 

the value of a successful experiment will be so high seems unlikely, but still the 

sponsor may not be particularly happy with a 0.02 probability of failure. 

The time during which the comet can be viewed satisfactorily does not permit 

more than two flights by one crew, but perhaps a parallel effort by two crews 

offers an answer. Each effort can be independent of the other; therefore, if the 

crews are equally competent, the probability of success with the second crew 

should equal that with the first. Also if they are equally efficient, the costs should 

be equal. 

The maximum cost of such a double effort with two scrim balloons and three 

inflations each would then be $632,300 and the probability of success, PS I U, of the 

dual effort is the probability that at least one effort will succeed. It may be cal- 

culated in either of the following ways: 
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OI- 

%D-(ypf,D)=(-f,‘pf,2) 
where PS 1 is probability of success of one effort. 

, 
PS 

, 
2 is probability of success of the other effort, and Pf 2 

1 and Pf 2 are cor- , 
responding probabilities of failure. With the choice of two scrim balloons and 
three inflations, 

‘SD = 0.98 + 0.98 - 0.98 x 0.98 = 0.9996 

or 

‘S,D = ’ - 0.02 x 0.02 = 0.9996 . 

This suggests a probability of success which exceeds that assumed for the satellite 
at less than one eighth the cost. Dual efforts with one scrim, one polyethylene and 
three inflations would provide a probability of success comparable with that of the 
satellite at one ninth the cost. 

21.6 LOOKiZiG BACK 

Having started with a simple decision model which enabled him to make quanti- 
tative comparisons between the utility of a single scrim balloon with one inflation 
and that of a single polyethylene balloon with one inflation, the manager then deve- 
loped a more complex model which let him compare the utility of a number of dif- 
ferent balloon operations with each other. From that model he developed quanti- 
tative data which were useful in making rough comparisons of the various balloon 
combinations with a satellite system. He realized, however, that his model for 
decision making was not designed to include the satellite; therefore, if he should 
wish to make a rigorous comparison with the satellite, he should review the deci- 
sion model carefully and modify it as necessary to assure that just comparisons 
can be made. He also assumed that the results of the model were applicable to 
another crew without change, and he further assumed that the probability of failure 
of the two were independent. If the results deriving from these assumptions are 
to be considered seriously in making a decision, they should be carefully examined 
for validity. 

This attempt by the manager to construct a realistic decision model has caused 
him to look systematically at what he believes to be the most ‘significant aspects of 
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the success or failure of a balloon flight operation. He may decide that he can 

construct a more realistic model for this particular problem; if so, he should do 

so. Whether he does so or not, he will realize that he needs to institute ways of 

obtaining better data (for example cost estimates, probabilities, etc. ) for use in 

future models. 

As a result of going through this exercise, he has a better appreciation of the 

way he should interact with the scientist, the scientist’s sponsor, the balloon manu- 

facturer, etc., if all pertinent facets of a problem are to be considered in proper 

perspective. 

Ultimately, of course, a man makes the decision, but he should make it from 

the vantage point of the most careful possible consideration of all pertinent facts. 

Modern decision theory provides a systematic way of approaching that vantage 

point. How closely the decision maker comes to it depends on his skill and dedi- 

cation. 
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